Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 159
1.
Eur J Hum Genet ; 32(4): 426-434, 2024 Apr.
Article En | MEDLINE | ID: mdl-38316953

GEMIN5 exerts key biological functions regulating pre-mRNAs intron removal to generate mature mRNAs. A series of patients were reported harboring mutations in GEMIN5. No treatments are currently available for this disease. We treated two of these patients with oral Coenzyme Q10 (CoQ10), which resulted in neurological improvements, although MRI abnormalities remained. Whole Exome Sequencing demonstrated compound heterozygosity at the GEMIN5 gene in both cases: Case one: p.Lys742* and p.Arg1016Cys; Case two: p.Arg1016Cys and p.Ser411Hisfs*6. Functional studies in fibroblasts revealed a decrease in CoQ10 biosynthesis compared to controls. Supplementation with exogenous CoQ10 restored it to control intracellular CoQ10 levels. Mitochondrial function was compromised, as indicated by the decrease in oxygen consumption, restored by CoQ10 supplementation. Transcriptomic analysis of GEMIN5 patients compared with controls showed general repression of genes involved in CoQ10 biosynthesis. In the rigor mortis defective flies, CoQ10 levels were decreased, and CoQ10 supplementation led to an improvement in the adult climbing assay performance, a reduction in the number of motionless flies, and partial restoration of survival. Overall, we report the association between GEMIN5 dysfunction and CoQ10 deficiency for the first time. This association opens the possibility of oral CoQ10 therapy, which is safe and has no observed side effects after long-term therapy.


Ataxia , Mitochondrial Diseases , Muscle Weakness , Ubiquinone , Ubiquinone/deficiency , Adult , Humans , Ubiquinone/genetics , Ubiquinone/therapeutic use , Ubiquinone/metabolism , Follow-Up Studies , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/genetics , Mutation , SMN Complex Proteins/genetics
2.
Nat Biomed Eng ; 8(2): 118-131, 2024 Feb.
Article En | MEDLINE | ID: mdl-38057426

Spinal muscular atrophy (SMA) is caused by mutations in SMN1. SMN2 is a paralogous gene with a C•G-to-T•A transition in exon 7, which causes this exon to be skipped in most SMN2 transcripts, and results in low levels of the protein survival motor neuron (SMN). Here we show, in fibroblasts derived from patients with SMA and in a mouse model of SMA that, irrespective of the mutations in SMN1, adenosine base editors can be optimized to target the SMN2 exon-7 mutation or nearby regulatory elements to restore the normal expression of SMN. After optimizing and testing more than 100 guide RNAs and base editors, and leveraging Cas9 variants with high editing fidelity that are tolerant of different protospacer-adjacent motifs, we achieved the reversion of the exon-7 mutation via an A•T-to-G•C edit in up to 99% of fibroblasts, with concomitant increases in the levels of the SMN2 exon-7 transcript and of SMN. Targeting the SMN2 exon-7 mutation via base editing or other CRISPR-based methods may provide long-lasting outcomes to patients with SMA.


Muscular Atrophy, Spinal , RNA-Binding Proteins , Mice , Animals , Humans , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , SMN Complex Proteins/genetics , RNA, Guide, CRISPR-Cas Systems , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/therapy , Exons/genetics , Survival of Motor Neuron 2 Protein/genetics
3.
Int J Mol Sci ; 24(21)2023 Oct 25.
Article En | MEDLINE | ID: mdl-37958537

The survival motor neuron (SMN) complex is a multi-megadalton complex involved in post-transcriptional gene expression in eukaryotes via promotion of the biogenesis of uridine-rich small nuclear ribonucleoproteins (UsnRNPs). The functional center of the complex is formed from the SMN/Gemin2 subunit. By binding the pentameric ring made up of the Sm proteins SmD1/D2/E/F/G and allowing for their transfer to a uridine-rich short nuclear RNA (UsnRNA), the Gemin2 protein in particular is crucial for the selectivity of the Sm core assembly. It is well established that post-translational modifications control UsnRNP biogenesis. In our work presented here, we emphasize the crucial role of Gemin2, showing that the phospho-status of Gemin2 influences the capacity of the SMN complex to condense in Cajal bodies (CBs) in vivo. Additionally, we define Gemin2 as a novel and particular binding partner and phosphorylation substrate of the mTOR pathway kinase ribosomal protein S6 kinase beta-1 (p70S6K). Experiments using size exclusion chromatography further demonstrated that the Gemin2 protein functions as a connecting element between the 6S complex and the SMN complex. As a result, p70S6K knockdown lowered the number of CBs, which in turn inhibited in vivo UsnRNP synthesis. In summary, these findings reveal a unique regulatory mechanism of UsnRNP biogenesis.


RNA-Binding Proteins , Ribosomal Protein S6 Kinases, 70-kDa , Cyclic AMP Response Element-Binding Protein/metabolism , Phosphorylation , Ribonucleoproteins, Small Nuclear/genetics , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , RNA-Binding Proteins/metabolism , SMN Complex Proteins/genetics , Uridine/metabolism
4.
Oncogene ; 42(37): 2751-2763, 2023 09.
Article En | MEDLINE | ID: mdl-37573407

The nuclear factor erythroid 2-like 2 (NFE2L2; NRF2) signaling pathway is frequently deregulated in human cancers. The critical functions of NRF2, other than its transcriptional activation, in cancers remain largely unknown. Here, we uncovered a previously unrecognized role of NRF2 in the regulation of RNA splicing. Global splicing analysis revealed that NRF2 knockdown in non-small cell lung cancer (NSCLC) A549 cells altered 839 alternative splicing (AS) events in 485 genes. Mechanistic studies demonstrated that NRF2 transcriptionally regulated SMN mRNA expression by binding to two antioxidant response elements in the SMN1 promoter. Post-transcriptionally, NRF2 was physically associated with the SMN protein. The Neh2 domain of NRF2, as well as the YG box and the region encoded by exon 7 of SMN, were required for their interaction. NRF2 formed a complex with SMN and Gemin2 in nuclear gems and Cajal bodies. Furthermore, the NRF2-SMN interaction regulated RNA splicing by expressing SMN in NRF2-knockout HeLa cells, reverting some of the altered RNA splicing. Moreover, SMN overexpression was significantly associated with alterations in the NRF2 pathway in patients with lung squamous cell carcinoma from The Cancer Genome Atlas. Taken together, our findings suggest a novel therapeutic strategy for cancers involving an aberrant NRF2 pathway.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Muscular Atrophy, Spinal , Humans , HeLa Cells , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , SMN Complex Proteins/genetics , SMN Complex Proteins/metabolism , RNA-Binding Proteins/genetics , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Motor Neurons/metabolism , RNA Splicing/genetics , Cyclic AMP Response Element-Binding Protein/metabolism
5.
Acta Neuropathol ; 146(3): 477-498, 2023 09.
Article En | MEDLINE | ID: mdl-37369805

GEMIN5 is essential for core assembly of small nuclear Ribonucleoproteins (snRNPs), the building blocks of spliceosome formation. Loss-of-function mutations in GEMIN5 lead to a neurodevelopmental syndrome among patients presenting with developmental delay, motor dysfunction, and cerebellar atrophy by perturbing SMN complex protein expression and assembly. Currently, molecular determinants of GEMIN5-mediated disease have yet to be explored. Here, we identified SMN as a genetic suppressor of GEMIN5-mediated neurodegeneration in vivo. We discovered that an increase in SMN expression by either SMN gene therapy replacement or the antisense oligonucleotide (ASO), Nusinersen, significantly upregulated the endogenous levels of GEMIN5 in mammalian cells and mutant GEMIN5-derived iPSC neurons. Further, we identified a strong functional association between the expression patterns of SMN and GEMIN5 in patient Spinal Muscular Atrophy (SMA)-derived motor neurons harboring loss-of-function mutations in the SMN gene. Interestingly, SMN binds to the C-terminus of GEMIN5 and requires the Tudor domain for GEMIN5 binding and expression regulation. Finally, we show that SMN upregulation ameliorates defective snRNP biogenesis and alternative splicing defects caused by loss of GEMIN5 in iPSC neurons and in vivo. Collectively, these studies indicate that SMN acts as a regulator of GEMIN5 expression and neuropathologies.


Muscular Atrophy, Spinal , RNA-Binding Proteins , Humans , Motor Neurons/metabolism , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Ribonucleoproteins, Small Nuclear/genetics , Ribonucleoproteins, Small Nuclear/chemistry , Ribonucleoproteins, Small Nuclear/metabolism , RNA-Binding Proteins/metabolism , SMN Complex Proteins/genetics , Tudor Domain
6.
Genes (Basel) ; 14(3)2023 03 13.
Article En | MEDLINE | ID: mdl-36980979

GEMIN5 is a multifunctional RNA-binding protein required for the assembly of survival motor neurons. Several bi-allelic truncating and missense variants in this gene are reported to cause a neurodevelopmental disorder characterized by cerebellar atrophy, intellectual disability (ID), and motor dysfunction. Whole exome sequencing of a Pakistani consanguineous family with three brothers affected by ID, cerebral atrophy, mobility, and speech impairment revealed a novel homozygous 3bp-deletion NM_015465.5:c.3162_3164del that leads to the loss of NM_015465.5 (NP_056280.2):p. (Asp1054_Ala1055delinsGlu) amino acid in one of the α-helixes of the tetratricopeptide repeats of GEMIN5. In silico 3D representations of the GEMIN5 dimerization domain show that this variant likely affects the orientation of the downstream sidechains out of the helix axis, which would affect the packing with neighboring helices. The phenotype of all affected siblings overlaps well with previously reported patients, suggesting that NM_015465.5: c.3162_3164del (NP_056280.2):p. (Asp1054_Ala1055delinsGlu) is a novel GEMIN5 pathogenic variant. Overall, our data expands the molecular and clinical phenotype of the recently described neurodevelopmental disorder with cerebellar atrophy and motor dysfunction (NEDCAM) syndrome.


Intellectual Disability , Neurodevelopmental Disorders , Male , Humans , Intellectual Disability/etiology , Tetratricopeptide Repeat , Pedigree , Neurodevelopmental Disorders/complications , Atrophy/genetics , SMN Complex Proteins/genetics
7.
PeerJ ; 10: e14317, 2022.
Article En | MEDLINE | ID: mdl-36405016

Background: The role of miRNA in depression is widely described by many researchers. miRNA is a final product of many genes involved in its formation (maturation). One of the final steps in the formation of miRNAs is the formation of the RISC complex, called the RNA-induced silencing complex, which includes, among others, GEMIN proteins. Single-nucleotide polymorphisms (SNPs) may lead to disturbance of miRNA biogenesis and function. The objective of our research was to assess the relationship between the appearance of depression and single nucleotide polymorphisms in the GEMIN3 (rs197388) and GEMIN4 (rs7813; rs3744741) genes. Our research provides new knowledge on the genetic factors that influence the risk of depression. They can be used as an element of diagnostics helpful in identifying people at increased risk, as well as indicating people not at risk of depression. Methods: A total of 218 participants were examined, including individuals with depressive disorders (n = 102; study group) and healthy people (n = 116, control group). All the patients in the study group and the people in the control group were non-related native Caucasian Poles from central Poland. Blood was collected from study and control groups in order to assess the SNPs of GEMIN genes. Results: An analysis of the results obtained showed that in patient population, the risk of depression is almost doubled by polymorphic variants of the genes: rs197388/GEMIN3 genotype A/A in the recessive model and rs3744741/GEMIN4 genotype T/T, codominant and recessive model. The dual role of rs7813/GEMIN4 is noteworthy, where the G/A genotype in the codominant and over dominant model protects against depression.


Depression , MicroRNAs , Humans , Poland/epidemiology , Depression/epidemiology , MicroRNAs/genetics , Genotype , SMN Complex Proteins/genetics
8.
Biomolecules ; 12(10)2022 Oct 20.
Article En | MEDLINE | ID: mdl-36291733

Survival motor neuron (SMN) is an essential and ubiquitously expressed protein that participates in several aspects of RNA metabolism. SMN deficiency causes a devastating motor neuron disease called spinal muscular atrophy (SMA). SMN forms the core of a protein complex localized at the cytoplasm and nuclear gems and that catalyzes spliceosomal snRNP particle synthesis. In cultured motor neurons, SMN is also present in dendrites and axons, and forms part of the ribonucleoprotein transport granules implicated in mRNA trafficking and local translation. Nevertheless, the distribution, regulation, and role of SMN at the axons and presynaptic motor terminals in vivo are still unclear. By using conventional confocal microscopy and STED super-resolution nanoscopy, we found that SMN appears in the form of granules distributed along motor axons at nerve terminals. Our fluorescence in situ hybridization and electron microscopy studies also confirmed the presence of ß-actin mRNA, ribosomes, and polysomes in the presynaptic motor terminal, key elements of the protein synthesis machinery involved in local translation in this compartment. SMN granules co-localize with the microtubule-associated protein 1B (MAP1B) and neurofilaments, suggesting that the cytoskeleton participates in transporting and positioning the granules. We also found that, while SMN granules are physiologically downregulated at the presynaptic element during the period of postnatal maturation in wild-type (non-transgenic) mice, they accumulate in areas of neurofilament aggregation in SMA mice, suggesting that the high expression of SMN at the NMJ, together with the cytoskeletal defects, contribute to impairing the bi-directional traffic of proteins and organelles between the axon and the presynaptic terminal.


Intermediate Filaments , Muscular Atrophy, Spinal , Animals , Mice , Actins/metabolism , Disease Models, Animal , In Situ Hybridization, Fluorescence , Intermediate Filaments/metabolism , Motor Neurons/metabolism , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Ribonucleoproteins/metabolism , Ribonucleoproteins, Small Nuclear/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , SMN Complex Proteins/genetics , SMN Complex Proteins/metabolism
9.
Life Sci Alliance ; 5(7)2022 07.
Article En | MEDLINE | ID: mdl-35393353

Dysfunction of RNA-binding proteins is often linked to a wide range of human disease, particularly with neurological conditions. Gemin5 is a member of the survival of the motor neurons (SMN) complex, a ribosome-binding protein and a translation reprogramming factor. Recently, pathogenic mutations in Gemin5 have been reported, but the functional consequences of these variants remain elusive. Here, we report functional and structural deficiencies associated with compound heterozygosity variants within the Gemin5 gene found in patients with neurodevelopmental disorders. These clinical variants are located in key domains of Gemin5, the tetratricopeptide repeat (TPR)-like dimerization module and the noncanonical RNA-binding site 1 (RBS1). We show that the TPR-like variants disrupt protein dimerization, whereas the RBS1 variant confers protein instability. All mutants are defective in the interaction with protein networks involved in translation and RNA-driven pathways. Importantly, the TPR-like variants fail to associate with native ribosomes, hampering its involvement in translation control and establishing a functional difference with the wild-type protein. Our study provides insights into the molecular basis of disease associated with malfunction of the Gemin5 protein.


Nervous System Diseases , RNA-Binding Proteins , Ribosomes , Humans , Nervous System Diseases/genetics , Nervous System Diseases/metabolism , RNA/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ribosomes/genetics , Ribosomes/metabolism , SMN Complex Proteins/genetics , SMN Complex Proteins/metabolism
11.
Int J Mol Sci ; 22(19)2021 Sep 23.
Article En | MEDLINE | ID: mdl-34638572

Spinal muscular atrophy (SMA) is caused by homozygous survival of motor neurons 1 (SMN1) gene deletion, leaving a duplicate gene, SMN2, as the sole source of SMN protein. However, a defect in SMN2 splicing, involving exon 7 skipping, results in a low level of functional SMN protein. Therefore, the upregulation of SMN protein expression from the SMN2 gene is generally considered to be one of the best therapeutic strategies to treat SMA. Most of the SMA drug discovery is based on synthetic compounds, and very few natural compounds have been explored thus far. Here, we performed an unbiased mechanism-independent and image-based screen of a library of microbial metabolites in SMA fibroblasts using an SMN-specific immunoassay. In doing so, we identified brefeldin A (BFA), a well-known inhibitor of ER-Golgi protein trafficking, as a strong inducer of SMN protein. The profound increase in SMN protein was attributed to, in part, the rescue of the SMN2 pre-mRNA splicing defect. Intriguingly, BFA increased the intracellular calcium concentration, and the BFA-induced exon 7 inclusion of SMN2 splicing, was abrogated by the depletion of intracellular calcium and by the pharmacological inhibition of calcium/calmodulin-dependent kinases (CaMKs). Moreover, BFA considerably reduced the expression of Tra2-ß and SRSF9 proteins in SMA fibroblasts and enhanced the binding of PSF and hnRNP M to an exonic splicing enhancer (ESE) of exon 7. Together, our results demonstrate a significant role for calcium and its signaling on the regulation of SMN splicing, probably through modulating the expression/activity of splicing factors.


Calcium Signaling/genetics , Gene Expression/genetics , Motor Neurons/physiology , Cell Line , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/physiology , Exons/genetics , Fibroblasts/physiology , Golgi Apparatus/genetics , Golgi Apparatus/physiology , HEK293 Cells , Humans , Muscular Atrophy, Spinal/genetics , Protein Transport/genetics , Protein Transport/physiology , RNA Splicing/genetics , RNA, Messenger/genetics , SMN Complex Proteins/genetics
12.
Clin Genet ; 100(6): 722-730, 2021 12.
Article En | MEDLINE | ID: mdl-34569062

Cerebellar ataxia is a genetically heterogeneous disorder. GEMIN5 encoding an RNA-binding protein of the survival of motor neuron complex, is essential for small nuclear ribonucleoprotein biogenesis, and it was recently reported that biallelic loss-of-function variants cause neurodevelopmental delay, hypotonia, and cerebellar ataxia. Here, whole-exome analysis revealed compound heterozygous GEMIN5 variants in two individuals from our cohort of 162 patients with cerebellar atrophy/hypoplasia. Three novel truncating variants and one previously reported missense variant were identified: c.2196dupA, p.(Arg733Thrfs*6) and c.1831G > A, p.(Val611Met) in individual 1, and c.3913delG, p.(Ala1305Leufs*14) and c.4496dupA, p.(Tyr1499*) in individual 2. Western blotting analysis using lymphoblastoid cell lines derived from both affected individuals showed significantly reduced levels of GEMIN5 protein. Zebrafish model for null variants p.(Arg733Thrfs*6) and p.(Ala1305Leufs*14) exhibited complete lethality at 2 weeks and recapitulated a distinct dysplastic phenotype. The phenotypes of affected individuals and the zebrafish mutant models strongly suggest that biallelic loss-of-function variants in GEMIN5 cause cerebellar atrophy/hypoplasia.


Cerebellar Ataxia/diagnosis , Cerebellar Ataxia/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Mutation , Phenotype , SMN Complex Proteins/genetics , Animals , Brain/abnormalities , Brain/diagnostic imaging , Disease Models, Animal , Facies , Genetic Association Studies/methods , Humans , Loss of Function Mutation , Magnetic Resonance Imaging , Models, Molecular , Motor Neurons/metabolism , Nonsense Mediated mRNA Decay , Pedigree , Protein Conformation , SMN Complex Proteins/chemistry , Structure-Activity Relationship , Exome Sequencing , Zebrafish
13.
Cell Rep Med ; 2(7): 100346, 2021 07 20.
Article En | MEDLINE | ID: mdl-34337562

Spinal muscular atrophy (SMA) is a devastating childhood motor neuron disease that, in the most severe cases and when left untreated, leads to death within the first two years of life. Recent therapeutic advances have given hope to families and patients by compensating for the deficiency in survival motor neuron (SMN) protein via gene therapy or other genetic manipulation. However, it is now apparent that none of these therapies will cure SMA alone. In this review, we discuss the three currently licensed therapies for SMA, briefly highlighting their respective advantages and disadvantages, before considering alternative approaches to increasing SMN protein levels. We then explore recent preclinical research that is identifying and targeting dysregulated pathways secondary to, or independent of, SMN deficiency that may provide adjunctive opportunities for SMA. These additional therapies are likely to be key for the development of treatments that are effective across the lifespan of SMA patients.


Molecular Targeted Therapy , Muscular Atrophy, Spinal/therapy , Precision Medicine , Animals , Gene Targeting , Humans , RNA Splicing/genetics , SMN Complex Proteins/genetics
14.
RNA Biol ; 18(sup1): 496-506, 2021 10 15.
Article En | MEDLINE | ID: mdl-34424823

Gemin5 is a multifaceted RNA-binding protein that comprises distinct structural domains, including a WD40 and TPR-like for which the X-ray structure is known. In addition, the protein contains a non-canonical RNA-binding domain (RBS1) towards the C-terminus. To understand the RNA binding features of the RBS1 domain, we have characterized its structural characteristics by solution NMR linked to RNA-binding activity. Here we show that a short version of the RBS1 domain that retains the ability to interact with RNA is predominantly unfolded even in the presence of RNA. Furthermore, an exhaustive mutational analysis indicates the presence of an evolutionarily conserved motif enriched in R, S, W, and H residues, necessary to promote RNA-binding via π-π interactions. The combined results of NMR and RNA-binding on wild-type and mutant proteins highlight the importance of aromatic and arginine residues for RNA recognition by RBS1, revealing that the net charge and the π-amino acid density of this region of Gemin5 are key factors for RNA recognition.


Arginine/metabolism , RNA-Binding Motifs , RNA/chemistry , RNA/metabolism , SMN Complex Proteins/chemistry , SMN Complex Proteins/metabolism , Tryptophan/metabolism , Amino Acid Sequence , Arginine/chemistry , Arginine/genetics , Binding Sites , Humans , Models, Molecular , Protein Binding , RNA/genetics , SMN Complex Proteins/genetics , Sequence Homology , Tryptophan/chemistry , Tryptophan/genetics
15.
Nucleic Acids Res ; 49(13): 7644-7664, 2021 07 21.
Article En | MEDLINE | ID: mdl-34181727

Protein oligomerization is one mechanism by which homogenous solutions can separate into distinct liquid phases, enabling assembly of membraneless organelles. Survival Motor Neuron (SMN) is the eponymous component of a large macromolecular complex that chaperones biogenesis of eukaryotic ribonucleoproteins and localizes to distinct membraneless organelles in both the nucleus and cytoplasm. SMN forms the oligomeric core of this complex, and missense mutations within its YG box domain are known to cause Spinal Muscular Atrophy (SMA). The SMN YG box utilizes a unique variant of the glycine zipper motif to form dimers, but the mechanism of higher-order oligomerization remains unknown. Here, we use a combination of molecular genetic, phylogenetic, biophysical, biochemical and computational approaches to show that formation of higher-order SMN oligomers depends on a set of YG box residues that are not involved in dimerization. Mutation of key residues within this new structural motif restricts assembly of SMN to dimers and causes locomotor dysfunction and viability defects in animal models.


SMN Complex Proteins/chemistry , Amino Acid Motifs , Amino Acid Sequence , Animals , Conserved Sequence , Dimerization , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila melanogaster/physiology , Humans , Locomotion , Models, Molecular , Mutation , Point Mutation , Protein Domains , Protein Multimerization , SMN Complex Proteins/genetics , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/genetics
16.
Nat Commun ; 12(1): 2558, 2021 05 07.
Article En | MEDLINE | ID: mdl-33963192

GEMIN5, an RNA-binding protein is essential for assembly of the survival motor neuron (SMN) protein complex and facilitates the formation of small nuclear ribonucleoproteins (snRNPs), the building blocks of spliceosomes. Here, we have identified 30 affected individuals from 22 unrelated families presenting with developmental delay, hypotonia, and cerebellar ataxia harboring biallelic variants in the GEMIN5 gene. Mutations in GEMIN5 perturb the subcellular distribution, stability, and expression of GEMIN5 protein and its interacting partners in patient iPSC-derived neurons, suggesting a potential loss-of-function mechanism. GEMIN5 mutations result in disruption of snRNP complex assembly formation in patient iPSC neurons. Furthermore, knock down of rigor mortis, the fly homolog of human GEMIN5, leads to developmental defects, motor dysfunction, and a reduced lifespan. Interestingly, we observed that GEMIN5 variants disrupt a distinct set of transcripts and pathways as compared to SMA patient neurons, suggesting different molecular pathomechanisms. These findings collectively provide evidence that pathogenic variants in GEMIN5 perturb physiological functions and result in a neurodevelopmental delay and ataxia syndrome.


Gene Expression Regulation, Developmental/genetics , Induced Pluripotent Stem Cells/metabolism , Neurodevelopmental Disorders/metabolism , Neurons/metabolism , Ribonucleoproteins, Small Nuclear/metabolism , SMN Complex Proteins/genetics , Alleles , Amino Acid Sequence , Animals , Child, Preschool , Developmental Disabilities/genetics , Drosophila/genetics , Drosophila/growth & development , Female , Gene Knockdown Techniques , Gene Ontology , HEK293 Cells , Humans , Loss of Function Mutation , Male , Muscle Hypotonia/genetics , Myoclonic Cerebellar Dyssynergia/genetics , Neurodevelopmental Disorders/diagnostic imaging , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/physiopathology , Pedigree , Polymorphism, Single Nucleotide , RNA-Seq , Ribonucleoproteins, Small Nuclear/genetics , Rigor Mortis/genetics , SMN Complex Proteins/metabolism
17.
Cell Mol Life Sci ; 78(10): 4785-4804, 2021 May.
Article En | MEDLINE | ID: mdl-33821292

Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease of variable clinical severity that is caused by mutations in the survival motor neuron 1 (SMN1) gene. Despite its name, SMN is a ubiquitous protein that functions within and outside the nervous system and has multiple cellular roles in transcription, translation, and proteostatic mechanisms. Encouragingly, several SMN-directed therapies have recently reached the clinic, albeit this has highlighted the increasing need to develop combinatorial therapies for SMA to achieve full clinical efficacy. As a subcellular site of dysfunction in SMA, mitochondria represents a relevant target for a combinatorial therapy. Accordingly, we will discuss our current understanding of mitochondrial dysfunction in SMA, highlighting mitochondrial-based pathways that offer further mechanistic insights into the involvement of mitochondria in SMA. This may ultimately facilitate translational development of targeted mitochondrial therapies for SMA. Due to clinical and mechanistic overlaps, such strategies may also benefit other motor neuron diseases and related neurodegenerative disorders.


Mitochondria/physiology , Muscular Atrophy, Spinal/physiopathology , Animals , Humans , Mitochondria/genetics , Motor Neurons/physiology , Muscular Atrophy, Spinal/genetics , Mutation/genetics , SMN Complex Proteins/genetics , Signal Transduction/genetics , Signal Transduction/physiology
18.
Nat Commun ; 12(1): 1278, 2021 02 24.
Article En | MEDLINE | ID: mdl-33627647

Gene expression requires tight coordination of the molecular machineries that mediate transcription and splicing. While the interplay between transcription kinetics and spliceosome fidelity has been investigated before, less is known about mechanisms regulating the assembly of the spliceosomal machinery in response to transcription changes. Here, we report an association of the Smn complex, which mediates spliceosomal snRNP biogenesis, with the 7SK complex involved in transcriptional regulation. We found that Smn interacts with the 7SK core components Larp7 and Mepce and specifically associates with 7SK subcomplexes containing hnRNP R. The association between Smn and 7SK complexes is enhanced upon transcriptional inhibition leading to reduced production of snRNPs. Taken together, our findings reveal a functional association of Smn and 7SK complexes that is governed by global changes in transcription. Thus, in addition to its canonical nuclear role in transcriptional regulation, 7SK has cytosolic functions in fine-tuning spliceosome production according to transcriptional demand.


RNA, Long Noncoding/metabolism , Ribonucleoproteins, Small Nuclear/metabolism , SMN Complex Proteins/metabolism , Animals , Cells, Cultured , HEK293 Cells , HeLa Cells , Humans , Mice , Motor Neurons/metabolism , RNA, Long Noncoding/genetics , Ribonucleoproteins, Small Nuclear/genetics , SMN Complex Proteins/genetics , Tandem Mass Spectrometry , Transcription, Genetic/genetics
19.
Brain Dev ; 43(1): 127-134, 2021 Jan.
Article En | MEDLINE | ID: mdl-32878721

INTRODUCTION: Spinal muscular atrophy (SMA) is caused by a defect in the survival motor neuron 1 (SMN1) gene. The Cooperative Study of the natural history of SMA Type I in Taiwan is a retrospective, longitudinal, observational study that helps in further understanding SMA disease progression in patients who have not received disease-modifying therapeutic interventions. METHODS: Case report forms were used to collect demographics; genetic confirmation; SMN2 copy number; treatment patterns; and clinical outcomes including ventilator use, endotracheal tube intubation, tracheostomy, gastrostomy, complications, and survival. RESULTS: A total of 111 patients with SMA Type I were identified over the study period (1979-2015). Mean (median) age of onset and age at confirmed diagnosis were 1.3 (0.8) and 4.9 (4.4) months, respectively. SMN1 deletion/mutation was documented in 70 patients and SMN2 copy number in 32 (2 copies, n = 20; 3 copies, n = 12). At 240 months, survival probability for patients born during 1995-2015 versus 1979-1994 was significantly longer (p = 0.0057). Patients with 3 SMN2 copies showed substantially longer 240-month survival versus patients with 2 SMN2 copies. Over the 36-year period, mean (median) age at death was 31.9 (8.8) months. As of December 2015, 95 patients had died, 13 were alive, and 3 were lost to follow-up. The use of supportive measures (tracheostomy and gastrostomy) was associated with improved survival. CONCLUSIONS: These data describe the short survival of patients with SMA Type I in Taiwan in the pretreatment era, emphasizing the positive impact of supportive measures on survival.


Spinal Muscular Atrophies of Childhood/epidemiology , Spinal Muscular Atrophies of Childhood/genetics , Spinal Muscular Atrophies of Childhood/mortality , Asian People/genetics , Female , Gene Dosage , Genetic Predisposition to Disease , Humans , Infant , Infant, Newborn , Longitudinal Studies , Male , Motor Neurons , Retrospective Studies , SMN Complex Proteins/genetics , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 2 Protein/metabolism , Taiwan/epidemiology
20.
Adv Exp Med Biol ; 1266: 117-125, 2020.
Article En | MEDLINE | ID: mdl-33105498

Spinal muscular atrophy (SMA) is a devastating neurodegenerative disease characterized by the degeneration of lower motor neurons in the spinal cord, leading to progressive paralysis and early death in the severe cases. SMA is primarily caused by the mutations in the gene of SMN (survival motor neuron). More research has focused on the development of SMN-targeted replacement therapy for SMA. The first US Food and Drug Administration (FDA)-approved modified antisense oligonucleotide (nusinersen) to treat SMA is to reverse intronic splicing silencer of SMN to produce fully functional SMN2. Recently, stem cell transplantation has shown the potential to repair the injured tissue and differentiate into neurons to rescue the phenotypes of SMA in animal models. In this chapter, we first review the clinical, genetic, and pathogenic mechanisms of SMA. Then, we discuss current pharmacological treatments and point out the therapeutic efficacy of stem cell transplantation and future directions and priorities for SMA.


Muscular Atrophy, Spinal , Stem Cell Transplantation , Animals , Disease Models, Animal , Humans , Motor Neurons , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/therapeutic use , RNA Splicing , SMN Complex Proteins/genetics
...